### Description

This site is currently hosting\n\nupdates on my mathematical research;\nexpository articles (such as my articles for the Princeton Companion to Mathematics, or for the tricks wiki);\ndiscussion of open problems;\ntalks that I have given or attended (such as the Distinguished Lectures Series at UCLA);\nmy advice on mathematical careers and mathematical writing;\ninformation about my books;\nmy lecture notes on ergodic theory, on the Poincar conjecture, on random matrices, on graduate real analysis (245B and 245C), and on higher order Fourier analysis;\na campaign to support mathematics, statistics, and computing at the University of Southern Queensland;\nand various other topics, usually related to mathematics.\nWhile most of the posts are aimed at those with a graduate maths background, I will also occasionally have a number of non-technical posts aimed at a lay mathematical audience. My selection of topics is guided by my own personal taste; I do not take requests for specific topics to post about on this blog.

### What's new (with Terry Tao)'s Latest Posts

+

I’ve just uploaded to the arXiv the D.H.J. Polymath paper “Variants of the Selberg sieve, and bounded intervals containing many primes“, which is the second paper to be produced from the Polymath8 project (the first one being discussed here). We’ll refer to this latter paper here as the Polymath8b paper, and the former as the […]

+

In the traditional foundations of probability theory, one selects a probability space , and makes a distinction between deterministic mathematical objects, which do not depend on the sampled state , and stochastic (or random) mathematical objects, which do depend (but in a measurable fashion) on the sampled state . For instance, a deterministic real number […]

+

Two of the most famous open problems in additive prime number theory are the twin prime conjecture and the binary Goldbach conjecture. They have quite similar forms: Twin prime conjecture The equation has infinitely many solutions with prime. Binary Goldbach conjecture The equation has at least one solution with prime for any given even . […]

+

Due to some requests, I’m uploading to my blog the slides for my recent talk in Segovia (for the birthday conference of Michael Cowling) on “Hilbert’s fifth problem and approximate groups“. The slides cover essentially the same range of topics in this series of lecture notes, or in this text of mine, though of course […]

+

Let be the algebraic closure of , that is to say the field of algebraic numbers. We fix an embedding of into , giving rise to a complex absolute value for algebraic numbers . Let be of degree , so that is irrational. A classical theorem of Liouville gives the quantitative bound for the irrationality […]

### Tags